
MPI component support in CIFTS FTB

The CIFTS Team

Argonne National Laboratory
Lawrence Berkeley National Laboratory

Oak Ridge National Laboratory
Indiana University

Ohio State University
University of Tennessee

August 3, 2010

1

MPI component support in FTB Page: 2 of 38

Contents

1 Introduction 3
1.1 Fault Tolerance Backplane (FTB) support in Message Passing Interface (MPI) . 3

2 MPI FTB Events 4
2.1 Node/Job/Rank Availability (Refer workflows in Appendix B.1, B.2) 4
2.2 Node/Job/Rank Failure Prediction . 7
2.3 C/R and Process Migration (Refer workflows in Appendix B.3, B.4) 8
2.4 Checkpoint/Restart library notifications . 10
2.5 Job status notifications . 11

A Open MPI FTB Events 12

B Open MPI FTB Workflows 14
B.1 Workflow: Node Failure . 16

B.1.1 Workflow: Node Failure Without Job . 17
B.1.2 Workflow: Node Failure With MPI Job Aborting 18
B.1.3 Workflow: Node Failure With MPI Job Continuing 19

B.2 Workflow: Node Failure (No RM/JS) . 20
B.2.1 Workflow: Node Failure With MPI Job Aborting 21
B.2.2 Workflow: Node Failure With MPI Job Continuing 22

B.3 Workflow: Checkpoint/Restart & Process Migration 23
B.3.1 Workflow: Gang Scheduling Support . 23
B.3.2 Workflow: Predicted Failure, Job Suspend 24
B.3.3 Workflow: Predicted Failure, Process Migration 25

B.4 Workflow: Checkpoint/Restart & Process Migration (No RM/JS) 26
B.4.1 Workflow: Predicted Failure, Job Suspend 27
B.4.2 Workflow: Predicted Failure, Process Migration 28

B.5 Workflow: Faulty Interconnect . 29
B.5.1 Workflow: Fail-over to an Alternative Device 30
B.5.2 Workflow: React to Corrupted or Missing Data 31

B.6 Workflow: Faulty Interconnect (No RM/JS) . 32
B.6.1 Workflow: Fail-over to an Alternative Device 33
B.6.2 Workflow: React to Corrupted or Missing Data 34

C MPICH2 FTB Events 35

D MVAPICH2 FTB Events 36

E MVAPICH FTB Workflows 38
E.1 Workflow: Process migration due to network failure 38
E.2 Workflow: Port Failover . 38

MPI component support in FTB Page: 3 of 38

1 Introduction

The Coordinated Infrastructure for Fault Tolerant Systems (CIFTS) Fault Tolerance Backplane
(FTB) provides a shared software infrastructure that facilitates the exchange of fault-related
information between various components that comprise the software stack of HEC systems. The
primary motivation is to assist in making these software components fault-aware and preferably
fault-tolerant, towards realizing the challenging goal of overall system resilience. The several
library implementations of the Message Passing Interface (MPI) form a pivotal part of the
software hierarchy of traditional HPC systems.

Based on the ideal workflows derived from common failure scenarios related to MPI, this
document aims at standardizing a common set of events that every conforming MPI library
implementation should support (either listen for, or respond with). The associated payloads
corresponding to each FTB MPI event are also listed. This is to be considered as a starting
point of discussion towards reaching a final consensus on the supported events and their rep-
resentation. MPI/FTB developers are encouraged to propose addendum to this document to
support any existing or additional failure scenarios.

1.1 FTB support in MPI

As a part of the CIFTS initiative, three existing MPI implementations, namely Open MPI,
MPICH and MVAPICH, support interaction with the FTB in varying capacities. Each of the
MPI libraries support different events, in some cases – common events with different severities
or common events with different payloads. A FTB client interested in MPI-related fault in-
formation has to rely on implementation-specific details to effectively utilize this information.
Thus, a FTB-aware user application written to deal with faults thrown by some MPI library X,
would fail to even recognize these events or derive any semantic meaning out of them, if some
other MPI library Y is used. Alternatively, the user application has to take into account all the
events and their associated payloads, supported by all the FTB-supporting MPI libraries. It is
important that we standardize, not only the the MPI FTB events and its payloads, but also
the FTB events pertaining to other components like the scheduler and the resource manager to
encompass a lot of common failure scenarios.

Events

MPI FTB events are the failure/information events thrown or caught by the MPI library acting
as a FTB client. These events are thrown under a common namespace (ftb.mpi.*) for the sake
of offering consistent semantics to the clients interested in subscribing to MPI-related events
with the FTB.

The list of events (derived from the corresponding common failure scenarios) are described
in sections A, B, C, D, E of this document. Section 2 enlists the events with their associated
payloads, that a MPI implementation must support in order to achieve full compliance with the
FTB. These events subsume the events already supported by existing FTB-supporting MPI
libraries. FTB allows each event to be accompanied by a user-specified event payload that
can hold additional data associated with that event. MPI notification events typically need
to convey additional information, for instance the “rank” of a dead node which forces us to
standardize not only the events but also the the payload contents and its representation.

MPI component support in FTB Page: 4 of 38

2 MPI FTB Events

The FTB offers two types of events: namely Normal events, which simply act as notifications
and Response events which are a response or follow-up to a previously published event. With
the introduction of reliable channels1 to the FTB, applications can use the FTB, not only
for notifications, but also for reliable invocations of services. Applications could implement
“commands” over the FTB. For instance, an application wishing to know about a particular
node failure can publish the corresponding event and wait for follow-up notifications from the
other FTB-enabled components in the system affirming the unavailability of the node.

The following list of events are classified according to the different scenarios in with they
occur and cross-referenced with their corresponding workflows. Events prefixed with CHECK are
command events which almost always expect a follow-up notification event. These events are
thus sent over a reliable channel. Events prefixed with DO are command events but do not usually
depend much on a follow-up event. They perform a reliable invocation of a service in response
to some other events. They are also typically sent over the reliable channel. All other events
are simply “notificational” events and can be sent over the regular unreliable channel. Each
FTB-enabled component prefixes the event with its own namespace identifier. Job schedulers
(JS) and resource managers (RM) prefix events with RM whereas the MPI library and/or the
MPI runtime throw events with the MPI prefix. Finally, events with the CONFIRM prefix are
generic response events to the corresponding CHECK or DO events. Dedicated agents or external
fault detectors could extrapolate information from the notifications they receive from individual
components and throw these more general CONFIRM events.

The payload representation is in the form of comma-separated key-value pairs and follows
standard set notation. Note that payload entries within square brackets [] are optional.

2.1 Node/Job/Rank Availability (Refer workflows in Appendix B.1, B.2)

FTB Event Thrown by Caught by Channel

1 CHECK NODES DEAD Monitoring system,
Application

External agent,
RM/JS, Autonomic
script

Reliable

Nodes N+ are suspected as unavailable. Check if nodes N+ are really dead. Since the
component throwing this event expects a response from the components across the other
layers, this event has to be sent over a reliable channel.

Payload

nodes: {N+}

2 CONFIRM NODES DEAD External agent, Au-
tonomic script

Monitoring system,
Application

Unreliable

Confirm that nodes N+ are indeed dead. This notification event can be caught by any
component including the application itself. It is typically thrown by an external agent
after it ascertains that a node is really dead.

1See the discussion at http://wiki.mcs.anl.gov/cifts/index.php/Reliability

http://wiki.mcs.anl.gov/cifts/index.php/Reliability

MPI component support in FTB Page: 5 of 38

Payload

nodes: {N+}

3 CONFIRM NODES ALIVE External agent, Au-
tonomic script

Monitoring system,
Application

Unreliable

Confirm that nodes N+ are alive. This event is thrown by the external agent or the
monitoring system in response to CHECK NODES DEAD if the node is responsive. It
can also be thrown as a purely notificational event which adds the nodes to the unallo-
cated resource pool if they were previously identified as dead.

Payload

nodes: {N+}

4 RM JOBS DEAD RM/JS MPI, External agent,
Autonomic script

Reliable

Confirm that jobs J+ running on nodes N+ are dead. This event could be thrown by
the RM/JS in response to the CHECK NODES DEAD event.

Payload

nodes: {N+}, jobs: {J+}

5 RM JOBS RUNNING RM/JS MPI, External agent,
Autonomic script

Reliable

Confirm that jobs J+ running on nodes N+ are running.

Payload

nodes: {N+}, jobs: {J+}

6 CHECK JOBS DEAD Monitoring system,
Application

RM/JS, External
agent, Autonomic
script

Reliable

Jobs J+ are suspected as unavailable. Check if jobs J+ are really dead.

Payload

jobs: {J+}

7 CONFIRM JOBS DEAD RM/JS, External
agent, Autonomic
script

Monitoring system,
Application

Unreliable

MPI component support in FTB Page: 6 of 38

Confirm that jobs J+ are indeed dead. This notification event can be caught by any
component including the application itself. It is typically thrown by an external detector
after making sure that the jobs are dead.

Payload

jobs: {J+}

8 CONFIRM JOBS RUNNING RM/JS, External
agent, Autonomic
script

Monitoring system,
Application

Unreliable

Confirm that jobs J+ are running. This notification event is typically thrown by the
RM/JS if the jobs are running.

Payload

jobs: {J+}

9 MPI RANKS DEAD MPI library/runtime External agent,
Monitoring system

Unreliable

Confirm that MPI ranks R+ belonging to jobs J+ running on nodes N+ are
dead. The MPI runtime (usually mpirun) throws this event in response to either
CHECK NODES DEAD (when the MPI runtime can form a relation between the nodes
and corresponding ranks) or CHECK JOBS DEAD or simply as a notification.

Payload

nodes: {N+}, [jobs: {J+},] ranks: {R+}

10 MPI RANKS ALIVE MPI library/runtime External agent,
Monitoring system

Unreliable

Confirm that MPI ranks R+ belonging to jobs J+ running on nodes N+ are
alive. The MPI runtime (usually mpirun) throws this event in response to either
CHECK NODES DEAD (when the MPI runtime can form a relation between the nodes
and corresponding ranks) or CHECK JOBS DEAD or simply as a notification.

Payload

nodes: {N+}, [jobs: {J+},] ranks: {R+}

11 CHECK RANKS DEAD Monitoring system,
Application

External agent, Au-
tonomic script, MPI

Reliable

Ranks R+ are suspected as unavailable. Check if ranks R+ are really dead.

MPI component support in FTB Page: 7 of 38

Payload

ranks: {R+}

12 CONFIRM RANKS DEAD MPI, External agent,
Autonomic script

Monitoring system,
Application

Unreliable

Confirm that ranks R+ are indeed dead. This event is typically thrown by MPI or an
external detector after making sure that the ranks are dead.

Payload

ranks: {R+}

13 CONFIRM RANKS ALIVE MPI, External agent,
Autonomic script

Monitoring system,
Application

Unreliable

Confirm that ranks R+ are alive. This event is thrown by MPI or an external detector
after making sure that the ranks are alive.

Payload

ranks: {R+}

2.2 Node/Job/Rank Failure Prediction

FTB Event Thrown by Caught by Channel

1 PREDICT NODES FAILURE External agent, Au-
tonomic script

RM/JS, MPI, Moni-
toring system

Unreliable

Depending on collected heuristics, predict imminent failure for nodes N+.

Payload

nodes: {N+}

2 PREDICT JOBS FAILURE RM/JS MPI, External agent,
Autonomic script

Unreliable

Depending on collected heuristics, predict imminent failure for jobs J+ running on
nodes N+.

Payload

nodes: {N+}, jobs: {J+}

3 PREDICT RANKS FAILURE MPI External agent, Au-
tonomic script, Ap-
plication

Unreliable

MPI component support in FTB Page: 8 of 38

Depending on collected heuristics, predict imminent failure for ranks R+ spanning jobs
J+ running on nodes N+.

Payload

nodes: {N+}, [jobs: {J+}], ranks: {R+}

2.3 C/R and Process Migration (Refer workflows in Appendix B.3, B.4)

FTB Event Thrown by Caught by Channel

1 DO NODE MIGRATE External agent, Au-
tonomic script

RM/JS, MPI Reliable

This event is thrown by the external agent or the autonomic script after it predicts a
node failure. It involves the migration of all the active services from the source node
to the destination node. Each component subscribed to this event further throws events
to migrate its resources from the dying node. For instance, a RM/JS catching this
event throws a follow-up event to migrate all the jobs associated with this node to other
node(s). Note that the destination node field in the payload is optional. If no destination
node is specified, the component has to “figure out” an unallocated destination node by
external means.

Payload

snode: SN [, dnode: DN]

2 RM JOBS MIGRATE RM/JS MPI, External agent,
Autonomic script

Reliable

This is a command event thrown by the RM/JS to initiate a request to migrate jobs J+

from source node SN to destination node DN.

Payload

snode: SN , dnode: DN , jobs: {J+}

3 MPI RANKS MIGRATE MPI External agent, Au-
tonomic script, Ap-
plication

Unreliable

This event is thrown by MPI after migrating ranks R+ belonging to jobs J+ from the
source node SN to destination node DN.

Payload

snode: SN , dnode: DN , [jobs: {J+},] ranks: {R+}

MPI component support in FTB Page: 9 of 38

4 CONFIRM NODE MIGRATE External agent, Au-
tonomic script

Monitoring system,
Application

Unreliable

Confirm that all the active services have been migrated from the source node SN to
destination node DN. Note that the destination node is no longer optional in the
payload.

Payload

snode: SN , dnode: DN

5 DO JOBS SUSPEND RM/JS External agent, Au-
tonomic script, MPI

Reliable

This is a command event that initiates a request to suspend jobs J+.

Payload

jobs: {J+}

6 MPI RANKS SUSPEND MPI External agent, Au-
tonomic script

Unreliable

This event is a notification event thrown by MPI after it suspends (mostly by taking a
checkpoint) ranks R+ belonging to jobs J+.

Payload

jobs: {J+}, ranks: {R+}

7 CONFIRM JOBS SUSPEND External agent, Au-
tonomic script

Monitoring system,
Application

Unreliable

Confirm that all the jobs J+ have been suspended.

Payload

jobs: {J+}

8 DO JOBS RESUME RM/JS External agent, Au-
tonomic script, MPI

Reliable

This is a command event that initiates a request to resume jobs J+.

Payload

jobs: {J+}

9 MPI RANKS RESUME MPI External agent, Au-
tonomic script

Unreliable

MPI component support in FTB Page: 10 of 38

This event is a notification event thrown by MPI after it resumes (mostly by initiating
a restart) ranks R+ belonging to jobs J+.

Payload

jobs: {J+}, ranks: {R+}

10 CONFIRM JOBS RESUME External agent, Au-
tonomic script

Monitoring system,
Application

Unreliable

Confirm that all the jobs J+ have been resumed and in a running state.

Payload

jobs: {J+}

11 MPI RANKS CKPT MPI External agent, Au-
tonomic script

Unreliable

This event is a notification event thrown by MPI after it checkpoints the ranks R+.

Payload

ranks: {R+}

12 MPI RANKS RESTART MPI External agent, Au-
tonomic script

Unreliable

This event is a notification event thrown by MPI after it restarts previously checkpointed
ranks R+.

Payload

ranks: {R+}

2.4 Checkpoint/Restart library notifications

FTB Event Thrown by Caught by Channel

1 CR CKPTS BEGIN C/R library MPI, Application,
External agent

Unreliable

This is a notification event to indicate that the C/R library has begun checkpointing
processes P+.

Payload

processes: {P+}

2 CR CKPTS END C/R library MPI, Application,
External agent

Unreliable

MPI component support in FTB Page: 11 of 38

This is a notification event to indicate that the C/R library has finished checkpointing
processes P+.

Payload

processes: {P+}

3 CR RESTARTS BEGIN C/R library MPI, Application,
External agent

Unreliable

This is a notification event to indicate that the C/R library has begun restarting pro-
cesses P+.

Payload

processes: {P+}

4 CR RESTARTS END C/R library MPI, Application,
External agent

Unreliable

This is a notification event to indicate that the C/R library has finished restarting
processes P+.

Payload

processes: {P+}

2.5 Job status notifications

FTB Event Thrown by Caught by Channel

1 RM JOBS CREATED RM/JS MPI, External agent,
Autonomic script

Reliable

New jobs J+ have been created. This event could be thrown by the RM/JS as a notifi-
cation event.

Payload

jobs: {J+}

2 RM JOBS COMPLETED RM/JS MPI, External agent,
Autonomic script

Reliable

Jobs J+ have completed. This event could be thrown by the RM/JS as a notification
event.

Payload

jobs: {J+}

OMPI FTB events Page: 12 of 38

A Open MPI FTB Events

The FTB notifier component throws events in the event namespace ftb.mpi.openmpi. At the
moment, it does not subscribe to or act upon any events from the FTB.

The supported FTB publishable events for Open MPI are listed in Table 1. These events are
mapped to the corresponding error codes in the ORTE framework. The FTB notifier component
translates the ORTE error codes to a corresponding FTB event and publishes them to the FTB.
For instance, the OpenIB BTL throws an event COMM FAILURE when the InfiniBand retry
count between two MPI processes exceeds a specified threshold. Since all the supported events
are normal events, they have an ’error type’ as 1. These events also have an associated payload
that describes the cause of the error.

Table 1: Supported publishable events for the OMPI FTB component
FTB Event Severity Corresponding ORTE error

UNKNOWN ERROR error

OUT OF RESOURCES
error ORTE ERR OUT OF RESOURCE

ORTE ERR TEMP OUT OF RESOURCE

UNREACHABLE
ORTE ERR CONNECTION REFUSED

error ORTE ERR CONNECTION FAILED
ORTE ERR UNREACH

COMM FAILURE error ORTE ERR COMM FAILURE

FATAL fatal ORTE ERR FATAL

Possible Events

This section lists the possible events likely to be supported by the Open MPI FTB component in
future. These events might most likely change per community feedback and specific requirements
of components relying on Open MPI for fault information. Table 2 lists the FTB events that
the component might want to subscribe to whereas Table 3 lists the possible publishable FTB
events for the OMPI-FTB component.

For a general overview of how these events coordinate with the other FTB-enabled compo-
nents, please refer to the IU CIFTS workflows.

OMPI FTB events Page: 13 of 38

Table 2: Possible subscribable events for the OMPI FTB module
FTB Event Type Description

NODE DEAD response Check if node X is unreachable

MPI NODE DEAD normal Node X is unreachable

NODE RESTORED response Add node X as an unallocated resource

MPI NODE RESTORED normal Return node X to the available resource pool

NODE MIGRATE response Migrate all ranks from Node X to Node Q

JOB ABORT response Suspend or terminate job Z

JOB RESUME normal Bring back job Z to a running state

IFACE DEAD response Physical interface P has failed

IFACE RESTORED normal Physical interface P is back to service

MPI MSG CORRUPT normal Message corruption on interface P

Table 3: Possible publishable events for the OMPI FTB module
FTB Event Severity Description

MPI INIT info Initialize the MPI execution environment

MPI FINALIZE info Finalize the MPI execution environment

MPI NODE DEAD error Node X is dead

MPI NODE RESTORED info Node X is back to service

MPI RANK DEAD error Rank Y (on Node X) is presumably dead

MPI RANK RESTORED info Rank Y (on Node X) is back to service

MPI NODE MIGRATE DONE info Ranks migrated from Node X to Node Q

MPI JOB ABORT CMD error Command to abort MPI Job Z

MPI JOB RESUME CMD info Command to resume MPI Job Z

MPI JOB ABORT error MPI Job Z has been aborted

MPI JOB RESUME info MPI Job Z has been resumed

MPI MSG CORRUPT error Message corruption on interface P

MPI IFACE DEAD error Mark physical interface P as dead

MPI IFACE RESTORED error Add P to available physical interfaces

OMPI FTB workflows Page: 14 of 38

B Open MPI FTB Workflows

We believe that many of the workflows in the proposal are still applicable, but with some slight
modifications. Most of the workflow discussion in this document focuses on the role of MPI
(particularly Open MPI). Further iterations are needed to refine these workflows such that they
are correct for other components of the CIFTS FTB.

For each workflow below we have also attempted to provide an alternative workflow that
work around non-FTB-aware RM/JS. To do so we rely on a mpirun process that has knowledge
of the global state of the MPI job and available resources. Open MPI has such a process that
usually resides on the login node when a new job is launched.

In the non-FTB-aware RM/JS scenarios we chose to pass the resource management and
event escalation duties to the mpirun process. We do this because the mpirun process has
global knowledge of the running processes and available resources to its job, and can more
abstractly escalate events than, say, the application. Normally we prefer to use an FTB-aware
RM/JS since it may handle non-MPI jobs and has the potential to do more interesting actions
in response to failure since it has knowledge beyond that of a single job.

In the event that the MPI and the RM/JS are non-FTB-aware, the application will have
to assume the responsibilities of the RM/JS and MPI to whatever degree that it is able. This
is following a general rule that the responsibility of resource management and event escalation
should be pushed to the FTB-aware component with (a) the largest amount of global knowledge
regarding resource availability, and (b) significantly low-level enough to meaningfully escalate
events originating from specific devices (e.g., Escalating “IB NIC failure” to “Node failure” to
“MPI Rank x,y,z Failed”).

NOTE: For the Workflows that attempt to work around a non-FTB-aware RM/JS, MPI*
denotes mpirun playing the role of RM/JS. In some cases MPI* is throwing events that are only
caught by MPI (and visa versa). The reason for this is to maintain generality so that when a
FTB-aware RM/JS is plugged in then the MPI implementation should be able to more easily
transition to using it.

Workflow: Node Failure

All of these workflows detail a response to a detected node failure.

• Section B.1 Details the registered events for various components.

• Section B.1.1 Node failure without a job

• Section B.1.2 Node failure with MPI job aborting

• Section B.1.3 Node failure with MPI job continuing

Workflow: Node Failure (No RM/JS)

All of these workflows detail a response to a detected node failure. They also work around
the need for a FTB aware RM/JS by relying on the mpirun process to handle many of these
activities. Note the Section B.1.1 has no corresponding section here since MPI is not involved.

• Section B.2 Details the registered events for various components.

• Section B.2.1 Node failure with MPI job aborting

• Section B.2.2 Node failure with MPI job continuing

OMPI FTB workflows Page: 15 of 38

Workflow: Checkpoint/Restart & Process Migration

All of these workflows detail a response to a predicted node failure. So with advance notice of
a failure, preventative actions are triggered to mitigate the impact of the failure. Additionally
a RM/JS might wish to trigger a checkpoint to provide a coarse-grained, gang scheduling type
of functionality.

• Section B.3 Details the registered events for various components.

• Section B.3.1 Gang Scheduling Support

• Section B.3.2 Predicted node failure, resulting in a full job suspension/shutdown

• Section B.3.3 Predicted node failure, resulting in process migration

Workflow: Checkpoint/Restart & Process Migration (No RM/JS)

All of these workflows detail a response to a predicted node failure. So with advance notice of a
failure, preventative actions are triggered to mitigate the impact of the failure. They also work
around the need for a FTB aware RM/JS by relying on the mpirun process to handle many of
these activities. Section B.3.1 is not represented since MPI is not able to control multiple ’jobs’.

• Section B.4 Details the registered events for various components.

• Section B.4.1 Predicted node failure, resulting in a full job suspension/shutdown

• Section B.4.2 Predicted node failure, resulting in process migration

Workflow: Interconnect Failure

All of these workflows detail a response to a faulty interconnect.

• Section B.5 Details the registered events for various components.

• Section B.5.1 Fail-over to an alternative device.

• Section B.5.2 React to corrupted or missing data

Workflow: Interconnect Failure (No RM/JS)

All of these workflows detail a response to a faulty interconnect. They also work around the need
for a FTB aware RM/JS by relying on the mpirun process to handle many of these activities.

• Section B.6 Details the registered events for various components.

• Section B.6.1 Fail-over to an alternative device.

• Section B.6.2 React to corrupted or missing data

Workflow: Task Farm

The task farm workflow concerns an MPI application that operates in a manager/worker model.
This workflow still needs to be more concretely specified in a later draft.

OMPI FTB workflows Page: 16 of 38

B.1 Workflow: Node Failure

The following table details the events that each component will want to either throw or catch.

Component Action Message

Initialization & Job Launch
0 RM/JS Register Check Problem Node (node *)
0 RM/JS Register Dead Physical Node (node *)
0 RM/JS Register Dead MPI Node (node *: job z)
0 RM/JS Register Restored Node (node *)
0 RM/JS Register Restored MPI Node (node *: job z)
0 Monitoring System Register Check Problem Node (node *)
0 Monitoring System Register Dead Physical Node (node *)
0 Monitoring System Register Restored Node (node *)
0 Autonomic Script Register Check Problem Node (node *)
0 Autonomic Script Register Dead Physical Node (node *)
0 MPI Register Dead MPI Node (node *: job z)
0 MPI Register Restored MPI Node (node *: job z)
0 MPI Register Dead MPI Rank (node x: job z: rank n-m)
0 Application Register Dead MPI Rank (node x: job z: rank n-m)
0 Application Register Restored MPI Node (node x: job z)

OMPI FTB workflows Page: 17 of 38

B.1.1 Workflow: Node Failure Without Job

A node failure can occur without any jobs running on the failed node.

Component Action Message

Node x Fails, no job running on node x

1 Monitoring System Throw Check Problem Node (node x)
Suspect problem with node x

2(a) RM/JS Catch Check Problem Node (node x)
Suspend scheduling on node x (suspect failure)

2(b) Autonomic Script Catch Check Problem Node (node x)
Attempt to confirm node x failed

3 Autonomic Script Throw Dead Physical Node (node x)
Confirmed node x failed

4(a) RM/JS Catch Dead Physical Node (node x)
Remove node x from resource pool

4(b) Monitoring System Catch Dead Physical Node (node x)
Remove node x from set of monitored resources

4(c) Autonomic Script Catch Dead Physical Node (node x)
Notify sysadmin, trigger full diagnosis after hard reboot
Archives system logs, begin stress test, bring online spare nodes
Refund CPU accounting units, reschedule job

Time passes, machine returned to service

5 Autonomic Script Throw Restored Node (node x)
Sysadmin uses script to notify services of node recovery

6(a) RM/JS Catch Restored Node (node x)
Return node x to resource pool

6(b) Monitoring System Catch Restored Node (node x)
Return node x to the set of monitored resources

OMPI FTB workflows Page: 18 of 38

B.1.2 Workflow: Node Failure With MPI Job Aborting

A node failure occurs while a job is running on the failed node. The policy expressed by the
application through the MPI interface is that the MPI abort on such a failure.

Component Action Message

Node x Fails, job z running on allocation including node x

1 Monitoring System Throw Check Problem Node (node x)
Suspect problem with node x

2(a) RM/JS Catch Check Problem Node (node x)
Mark node x as (suspect failure)

2(b) Autonomic Script Catch Check Problem Node (node x)
Attempt to confirm node x failed

3 Autonomic Script Throw Dead Physical Node (node x)
Confirmed node x failed

4(a) RM/JS Catch Dead Physical Node (node x)
Remove node x from resource pool

4(b) Monitoring System Catch Dead Physical Node (node x)
Remove node x from set of monitored resources

4(c) Autonomic Script Catch Dead Physical Node (node x)
Notify sysadmin, trigger full diagnosis after hard reboot
Archives system logs, begin stress test, bring online spare nodes
Refund CPU accounting units, reschedule job

5 RM/JS Throw Dead MPI Node (node x: job z)
Translates node x to job z

6 MPI Catch Dead MPI Node (node x: job z)
MPI prints console error, aborts job z

Time passes, machine returned to service

7 Autonomic Script Throw Restored Node (node x)
Sysadmin uses script to notify services of node recovery

8(a) RM/JS Catch Restored Node (node x)
Return node x to unallocated resource pool

8(b) Monitoring System Catch Restored Node (node x)
Return node x to the set of monitored resources

OMPI FTB workflows Page: 19 of 38

B.1.3 Workflow: Node Failure With MPI Job Continuing

A node failure occurs while a job is running on the failed node. Node failure policy is that MPI
should continue with holes in communicators. Node recovery policy is that MPI adds resources
to internal pool to support application directed re-spawning of processes.

Component Action Message

Node x Fails, job z running on allocation including node x

1 Monitoring System Throw Check Problem Node (node x)
Suspect problem with node x

2(a) RM/JS Catch Check Problem Node (node x)
Mark node x as (suspect failure)

2(b) Autonomic Script Catch Check Problem Node (node x)
Attempt to confirm node x failed

3 Autonomic Script Throw Dead Physical Node (node x)
Confirmed node x failed

4(a) RM/JS Catch Dead Physical Node (node x)
Remove node x from resource pool

4(b) Monitoring System Catch Dead Physical Node (node x)
Remove node x from set of monitored resources

4(c) Autonomic Script Catch Dead Physical Node (node x)
Notify sysadmin, trigger full diagnosis after hard reboot
Archives system logs, begin stress test, bring online spare nodes
Refund CPU accounting units, reschedule job

5 RM/JS Throw Dead MPI Node (node x: job z)
Translates node x to job z

6 MPI Catch Dead MPI Node (node x: job z)
Translate (node x:job z) to ranks m-n
Replace ranks m-n with MPI PROC NULL, call application error handlers

7 MPI Throw Dead MPI Rank (node x: job z: rank n-m)
Translate (node x:job z) to ranks m-n

8 Application Catch Dead MPI Rank (node x: job z: rank n-m)
Work around ’blank’ ranks n-m in the MPI communicators

Time passes, machine returned to service

9 Autonomic Script Throw Restored Node (node x)
Sysadmin uses script to notify services of node recovery

10(a) RM/JS Catch Restored Node (node x)
Return node x to resource pool for job z

10(b) Monitoring System Catch Restored Node (node x)
Return node x to the set of monitored resources

11 RM/JS Throw Restored MPI Node (node x: job z)
Translates node x to job z

12(a) MPI Catch Restored MPI Node (node x: job z)
Add node x as an unallocated resource

12(b) Application Catch Restored MPI Node (node x: job z)
If needed, use MPI Comm spawn to create new processes

OMPI FTB workflows Page: 20 of 38

B.2 Workflow: Node Failure (No RM/JS)

The following table details the events that each component will want to either throw or catch.
MPI* denotes mpirun playing the role of RM/JS.

Component Action Message

Initialization & Job Launch
0 MPI* Register Check Problem Node (node *)
0 MPI* Register Dead Physical Node (node *)
0 MPI* Register Dead MPI Node (node *: job z)
0 MPI* Register Restored Node (node *)
0 MPI* Register Restored MPI Node (node *: job z)
0 Monitoring System Register Check Problem Node (node *)
0 Monitoring System Register Dead Physical Node (node *)
0 Monitoring System Register Restored Node (node *)
0 Autonomic Script Register Check Problem Node (node *)
0 Autonomic Script Register Dead Physical Node (node *)
0 MPI Register Dead MPI Node (node *: job z)
0 MPI Register Restored MPI Node (node *: job z)
0 MPI Register Dead MPI Rank (node x: job z: rank n-m)
0 Application Register Dead MPI Rank (node x: job z: rank n-m)
0 Application Register Restored MPI Node (node x: job z)

OMPI FTB workflows Page: 21 of 38

B.2.1 Workflow: Node Failure With MPI Job Aborting

A node failure occurs while a job is running on the failed node. The policy expressed by the
application through the MPI interface is that the MPI abort on such a failure.

Component Action Message

Node x Fails, job z running on allocation including node x

1 Monitoring System Throw Check Problem Node (node x)
Suspect problem with node x

2(a) MPI* Catch Check Problem Node (node x)
Mark node x as (suspect failure)

2(b) Autonomic Script Catch Check Problem Node (node x)
Attempt to confirm node x failed

3 Autonomic Script Throw Dead Physical Node (node x)
Confirmed node x failed

4(a) MPI* Catch Dead Physical Node (node x)
Remove node x from internal resource pool

4(b) Monitoring System Catch Dead Physical Node (node x)
Remove node x from set of monitored resources

4(c) Autonomic Script Catch Dead Physical Node (node x)
Notify sysadmin, trigger full diagnosis after hard reboot
Archives system logs, begin stress test, bring online spare nodes
Refund CPU accounting units, reschedule job

5 MPI* Throw Dead MPI Node (node x: job z)
Translates node x to job z (value stored internally)

6 MPI Catch Dead MPI Node (node x: job z)
MPI prints console error, aborts job z

Time passes, machine returned to service

7 Autonomic Script Throw Restored Node (node x)
Sysadmin uses script to notify services of node recovery
Sysadmin manually adds node to RM/JS

8 Monitoring System Catch Restored Node (node x)
Return node x to the set of monitored resources

OMPI FTB workflows Page: 22 of 38

B.2.2 Workflow: Node Failure With MPI Job Continuing

A node failure occurs while a job is running on the failed node. Node failure policy is that MPI
should continue with holes in communicators. Node recovery policy is that MPI adds resources
to internal pool to support application directed re-spawning of processes.

Component Action Message

Node x Fails, job z running on allocation including node x

1 Monitoring System Throw Check Problem Node (node x)
Suspect problem with node x

2(a) MPI* Catch Check Problem Node (node x)
Mark node x as (suspect failure)

2(b) Autonomic Script Catch Check Problem Node (node x)
Attempt to confirm node x failed

3 Autonomic Script Throw Dead Physical Node (node x)
Confirmed node x failed

4(a) MPI* Catch Dead Physical Node (node x)
Remove node x from internal resource pool

4(b) Monitoring System Catch Dead Physical Node (node x)
Remove node x from set of monitored resources

4(c) Autonomic Script Catch Dead Physical Node (node x)
Notify sysadmin, trigger full diagnosis after hard reboot
Archives system logs, begin stress test, bring online spare nodes
Refund CPU accounting units, reschedule job

5 MPI* Throw Dead MPI Node (node x: job z)
Translates node x to job z (value stored internally)

6 MPI Catch Dead MPI Node (node x: job z)
Translate (node x:job z) to ranks m-n
Replace ranks m-n with MPI PROC NULL, call application error handlers

7 MPI Throw Dead MPI Rank (node x: job z: rank n-m)
Translate (node x:job z) to ranks m-n

8 Application Catch Dead MPI Rank (node x: job z: rank n-m)
Work around ’blank’ ranks n-m in the MPI communicators

Time passes, machine returned to service

9 Autonomic Script Throw Restored Node (node x)
Sysadmin uses script to notify services of node recovery
Sysadmin manually adds node to RM/JS, allocate to job z

10(a) MPI* Catch Restored Node (node x)
Return node x to resource pool for job z (MPI looks up new resources)

10(b) Monitoring System Catch Restored Node (node x)
Return node x to the set of monitored resources

11 MPI* Throw Restored MPI Node (node x: job z)
Translates node x to job z (value stored internally)

12(a) MPI Catch Restored MPI Node (node x: job z)
Add node x as an unallocated resource

12(b) Application Catch Restored MPI Node (node x: job z)
If needed, use MPI Comm spawn to create new processes

OMPI FTB workflows Page: 23 of 38

B.3 Workflow: Checkpoint/Restart & Process Migration

All of these workflows detail a response to a predicted node failure. So with advance notice of
a failure, preventative actions are triggered to mitigate the impact of the failure. Additionally
a RM/JS might wish to trigger a checkpoint to provide a coarse-grained, gang scheduling type
of functionality.

Component Action Message

Initialization & Job Launch
0 RM/JS Register Restored Node (node *)
0 RM/JS Register Suspend Job (job z)
0 RM/JS Register Resume Job (job z)
0 RM/JS Register Resume Job Cmd (job z)
0 RM/JS Register Predict Problem Node (node *)
0 RM/JS Register Migrate Node (job z: node x,q)
0 RM/JS Register Migrate Node Done (job z: node x,q)
0 RM/JS Register Restored Node (node *)
0 RM/JS Register Restored MPI Node (node *: job z)
0 Autonomic Script Register Restored Node (node *)
0 Autonomic Script Register Predict Problem Node (node *)
0 MPI Register Suspend Job (job z)
0 MPI Register Resume Job (job z)
0 MPI Register Resume Job Cmd (job z)
0 MPI Register Migrate Node (job z: node x,q)
0 MPI Register Migrate Node Done (job z: node x,q)
0 MPI Register Restored MPI Node (node *: job z)

B.3.1 Workflow: Gang Scheduling Support

Gang scheduling support. The RM/JS suspends and resumes entire jobs using a checkpoint/restart
technique in cooperation with the MPI implementation.

Component Action Message

RM/JS decides to suspend job z using CPR

1 RM/JS Throw Suspend Job (job z)
Suspend job z

2 MPI Catch Suspend Job (job z)
Coordinate a global checkpoint operation. Suspend/Terminate job z

3 MPI Throw Resume Job Cmd (job z)
Provide RM/JS with the command needed to resume job z

4 RM/JS Catch Resume Job Cmd (job z)
Store command with information for job z

RM/JS decides to resume job z from CPR

5 RM/JS Throw Resume Job (job z)
Use stored resume information for job z to restart job

6 MPI Catch Resume Job (job z)
Bring job z back into a running state

OMPI FTB workflows Page: 24 of 38

B.3.2 Workflow: Predicted Failure, Job Suspend

A monitoring system predicts a node failure based on heuristic information gathered from
the operating system, network card, and other system resources. The job is suspended and
rescheduled for later execution.

Component Action Message

RM/JS decides to suspend job z using CPR

1 Autonomic Script Throw Predict Problem Node (node x)
Information gathered indicates emanate failure of node x

2 RM/JS Catch Predict Problem Node (node x)
Suspend scheduling on node x (predicted failure)
Translate node x to job z

3 RM/JS Throw Suspend Job (job z)
Suspend job z

4 MPI Catch Suspend Job (job z)
Coordinate a global checkpoint operation. Suspend/Terminate job z

5 MPI Throw Resume Job Cmd (job z)
Provide RM/JS with the command needed to resume job z

6 RM/JS Catch Resume Job Cmd (job z)
Store command with information for job z
Reschedule job z

Job z becomes runnable once again

7 RM/JS Throw Resume Job (job z)
Use stored resume information for job z to restart job

8 MPI Catch Resume Job (job z)
Bring job z back into a running state

Time passes, node x returned to service

9 Autonomic Script Throw Restored Node (node x)
Information gathered indicates node x is stable again

10 RM/JS Catch Restored Node (node x)
Return node x to resource pool

OMPI FTB workflows Page: 25 of 38

B.3.3 Workflow: Predicted Failure, Process Migration

A monitoring system predicts a node failure based on heuristic information gathered from the
operating system, network card, and other system resources. Affected processes are migrated
to alternative resources provided by the RM/JS.

Component Action Message

RM/JS decides to suspend job z using CPR

1 Autonomic Script Throw Predict Problem Node (node x)
Information gathered indicates emanate failure of node x

2 RM/JS Catch Predict Problem Node (node x)
Suspend scheduling on node x (predicted failure)
Translate node x to job z

3 RM/JS Throw Migrate Node (job z: node x,q)
Allocate spare node q to job z
Migrate processes from job z on node x to new node q

4 MPI Catch Migrate Node (job z: node x,q)
Coordinate a global checkpoint operation.
Migrate ranks from node x to new node q. Resume application

5 MPI Throw Migrate Node Done (job z: node x,q)
Tell RM/JS that migration is finished

6 RM/JS Catch Migrate Node Done (job z: node x,q)
Receive confirmation that node x no longer contains MPI ranks

Time passes, node x returned to service

7 Autonomic Script Throw Restored Node (node x)
Information gathered indicates node x is stable again

8 RM/JS Catch Restored Node (node x)
Return node x to resource pool for job z

9 RM/JS Throw Restored MPI Node (node x: job z)
Translates node x to job z

10 MPI Catch Restored MPI Node (node x: job z)
Add node x as an unallocated resource

OMPI FTB workflows Page: 26 of 38

B.4 Workflow: Checkpoint/Restart & Process Migration (No RM/JS)

All of these workflows detail a response to a predicted node failure. So with advance notice of a
failure, preventative actions are triggered to mitigate the impact of the failure. MPI* denotes
mpirun playing the role of RM/JS.

Component Action Message

Initialization & Job Launch
0 MPI* Register Restored Node (node *)
0 MPI* Register Suspend Job (job z)
0 MPI* Register Resume Job Cmd (job z)
0 MPI* Register Predict Problem Node (node *)
0 MPI* Register Migrate Node (job z: node x,q)
0 MPI* Register Migrate Node Done (job z: node x,q)
0 MPI* Register Restored Node (node *)
0 MPI* Register Restored MPI Node (node *: job z)
0 Autonomic Script Register Restored Node (node *)
0 Autonomic Script Register Predict Problem Node (node *)
0 MPI Register Suspend Job (job z)
0 MPI Register Resume Job (job z)
0 MPI Register Resume Job Cmd (job z)
0 MPI Register Migrate Node (job z: node x,q)
0 MPI Register Migrate Node Done (job z: node x,q)
0 MPI Register Restored MPI Node (node *: job z)

OMPI FTB workflows Page: 27 of 38

B.4.1 Workflow: Predicted Failure, Job Suspend

A monitoring system predicts a node failure based on heuristic information gathered from the
operating system, network card, and other system resources. The job is checkpointed and
terminated. The user can manually resubmit the job at a later time.

Component Action Message

MPI decides to suspend job z using CPR to avoid node failure

1 Autonomic Script Throw Predict Problem Node (node x)
Information gathered indicates emanate failure of node x

2 MPI* Catch Predict Problem Node (node x)
Translate node x to job z (value stored internally)

3 MPI* Throw Suspend Job (job z)
Suspend job z

4 MPI Catch Suspend Job (job z)
Coordinate a global checkpoint operation. Suspend/Terminate job z

5 MPI Throw Resume Job Cmd (job z)
Provide MPI* with the command needed to resume job z

6 MPI* Catch Resume Job Cmd (job z)
Print command for user to resubmit job z at a later time

Time passes, node x returned to service

7 Autonomic Script Throw Restored Node (node x)
Information gathered indicates node x is stable again
Sysadmin manually adds node to RM/JS
User can manually resubmit job using resume command provided by MPI*

OMPI FTB workflows Page: 28 of 38

B.4.2 Workflow: Predicted Failure, Process Migration

A monitoring system predicts a node failure based on heuristic information gathered from the
operating system, network card, and other system resources. Affected processes are migrated
to alternative resources from the list of resources known to mpirun (this may also oversubscribe
nodes depending on policy).

Component Action Message

MPI decides to suspend job z using CPR to avoid node failure

1 Autonomic Script Throw Predict Problem Node (node x)
Information gathered indicates emanate failure of node x

2 MPI* Catch Predict Problem Node (node x)
Translate node x to job z (value stored internally)

3 MPI* Throw Migrate Node (job z: node x,q)
Determine target node q from known pool of nodes in job z
Migrate processes from job z on node x to new node q

4 MPI Catch Migrate Node (job z: node x,q)
Coordinate a global checkpoint operation.
Migrate ranks from node x to new node q. Resume application

5 MPI Throw Migrate Node Done (job z: node x,q)
Tell MPI* that migration is finished

6 MPI* Catch Migrate Node Done (job z: node x,q)
Receive confirmation that node x no longer contains MPI ranks

Time passes, node x returned to service

7 Autonomic Script Throw Restored Node (node x)
Information gathered indicates node x is stable again
Sysadmin manually adds node to RM/JS, reallocate to job z

8 MPI* Catch Restored Node (node x)
Return node x to resource pool for job z (MPI looks up new resources)

9 MPI* Throw Restored MPI Node (node x: job z)
Translates node x to job z (value stored internally)

10 MPI Catch Restored MPI Node (node x: job z)
Add node x as an unallocated resource
May also re-load balance

OMPI FTB workflows Page: 29 of 38

B.5 Workflow: Faulty Interconnect

The following table details the events that each component will want to either throw or catch.

Component Action Message

Initialization & Job Launch
0 RM/JS Register Failed Physical Interface (iface *: node *)
0 RM/JS Register Failed MPI Physical Interface (iface *: node *: job *)
0 RM/JS Register Restored Physical Interface (iface *: node *)
0 RM/JS Register Restored MPI Physical Interface (iface *: node *: job *)
0 RM/JS Register MPI Message Corruption (node *: job *)
0 IB Fault Monitor Register Failed Physical Interface (iface *: node *)
0 IB Fault Monitor Register Restored Physical Interface (iface *: node *)
0 IB Fault Monitor Register Check Physical Interface (iface *: node *)
0 Autonomic Script Register Failed Physical Interface (iface *: node *)
0 Autonomic Script Register Restored Physical Interface (iface *: node *)
0 Autonomic Script Register Check Physical Interface (iface *: node *)
0 MPI Register Failed MPI Physical Interface (iface *: node *: job z)
0 MPI Register Restored MPI Physical Interface (iface *: node *: job z)
0 MPI Register MPI Message Corruption (node *: job z)

OMPI FTB workflows Page: 30 of 38

B.5.1 Workflow: Fail-over to an Alternative Device

A physical network interface fails, MPI fails-over to an alternative device and continues.

Component Action Message

Interface p fails on node x, job z running on node x
IB Fault Monitor is first to detect

1 IB Fault Monitor Throw Failed Physical Interface (iface p: node x)
Interface p on node x has failed

2(a) RM/JS Catch Failed Physical Interface (iface p: node x)
Translate node x to job z

2(b) Autonomic Script Catch Failed Physical Interface (iface p: node x)
Attempt diagnose and clean up IB routes and switches

3 RM/JS Throw Failed MPI Physical Interface (iface p: node x: job z)
Notify MPI of failed interface

4 MPI Catch Failed MPI Physical Interface (iface p: node x: job z)
Mark interface p as down
If possible, use an alternative interface
If not, suspend communication until interface restored

Interface p returned to service on node x

5 Autonomic Script Throw Restored Physical Interface (iface p: node x)
Interface p has been restored to service on node x

6(a) IB Fault Monitor Catch Restored Physical Interface (iface p: node x)
Confirm interface is restored

6(b) RM/JS Catch Restored Physical Interface (iface p: node x)
Translate node x to job z

7 RM/JS Throw Restored MPI Physical Interface (iface p: node x: job z)
Notify MPI of restored/new interface p

8 MPI Catch Restored MPI Physical Interface (iface p: node x: job z)
Add interface p back to the possible interfaces for communication

OMPI FTB workflows Page: 31 of 38

B.5.2 Workflow: React to Corrupted or Missing Data

A physical network interface is dropping or corrupting packets. MPI takes corrective action to
mask such fails. At some point MPI may decide to remove the interface from service similar to
Section B.5.1

Component Action Message

Interface p dropping or corrupting packets on node x
MPI is first to detect

1 MPI Throw MPI Message Corruption (node x: job z)
MPI detects message corruption
Continue masking corruption while interfaces are inspected

2 RM/JS Catch MPI Message Corruption (node x: job z)
Translate node x to iface p-q

3 RM/JS Throw Check Interface (iface p-q: node x)
Ask script to check interfaces for suspected failure

4(a) Autonomic Script Catch Check Interface (iface p-q: node x)
Checks interfaces

4(b) IB Fault Monitor Catch Check Interface (iface p-q: node x)
Checks interfaces

5 Autonomic Script Throw Failed Physical Interface (iface p: node x)
Notify of confirmed failed interface

6 RM/JS Catch Failed Physical Interface (iface p: node x)
Translate node x to job z

7 RM/JS Throw Failed MPI Physical Interface (iface p: node x: job z)
Notify MPI of failed interface

8 MPI Catch Failed MPI Physical Interface (iface p: node x: job z)
Mark interface p as down
If possible, use an alternative interface
If not, suspend communication until interface restored

Interface p returned to service on node x

9 Autonomic Script Throw Restored Physical Interface (iface p: node x)
Interface p has been restored to service on node x

10(a) IB Fault Monitor Catch Restored Physical Interface (iface p: node x)
Confirm interface is restored

10(b) RM/JS Catch Restored Physical Interface (iface p: node x)
Translate node x to job z

11 RM/JS Throw Restored MPI Physical Interface (iface p: node x: job z)
Notify MPI of restored/new interface p

12 MPI Catch Restored MPI Physical Interface (iface p: node x: job z)
Add interface p back to the possible interfaces for communication

OMPI FTB workflows Page: 32 of 38

B.6 Workflow: Faulty Interconnect (No RM/JS)

The following table details the events that each component will want to either throw or catch.
MPI* denotes mpirun playing the role of RM/JS.

Component Action Message

Initialization & Job Launch
0 MPI* Register Failed Physical Interface (iface *: node *)
0 MPI* Register Failed MPI Physical Interface (iface *: node *: job *)
0 MPI* Register Restored Physical Interface (iface *: node *)
0 MPI* Register Restored MPI Physical Interface (iface *: node *: job *)
0 MPI* Register MPI Message Corruption (node *: job *)
0 IB Fault Monitor Register Failed Physical Interface (iface *: node *)
0 IB Fault Monitor Register Restored Physical Interface (iface *: node *)
0 IB Fault Monitor Register Check Physical Interface (iface *: node *)
0 Autonomic Script Register Failed Physical Interface (iface *: node *)
0 Autonomic Script Register Restored Physical Interface (iface *: node *)
0 Autonomic Script Register Check Physical Interface (iface *: node *)
0 MPI Register Failed MPI Physical Interface (iface *: node *: job z)
0 MPI Register Restored MPI Physical Interface (iface *: node *: job z)
0 MPI Register MPI Message Corruption (node *: job z)

OMPI FTB workflows Page: 33 of 38

B.6.1 Workflow: Fail-over to an Alternative Device

A physical network interface fails, MPI fails-over to an alternative device and continues.

Component Action Message

Interface p fails on node x, job z running on node x
IB Fault Monitor is first to detect

1 IB Fault Monitor Throw Failed Physical Interface (iface p: node x)
Interface p on node x has failed

2(a) MPI* Catch Failed Physical Interface (iface p: node x)
Translate node x to job z (value stored internally)

2(b) Autonomic Script Catch Failed Physical Interface (iface p: node x)
Attempt diagnose and clean up IB routes and switches

3 MPI* Throw Failed MPI Physical Interface (iface p: node x: job z)
Notify MPI of failed interface

4 MPI Catch Failed MPI Physical Interface (iface p: node x: job z)
Mark interface p as down
If possible, use an alternative interface
If not, suspend communication until interface restored

Interface p returned to service on node x

5 Autonomic Script Throw Restored Physical Interface (iface p: node x)
Interface p has been restored to service on node x

6(a) IB Fault Monitor Catch Restored Physical Interface (iface p: node x)
Confirm interface is restored

6(b) MPI* Catch Restored Physical Interface (iface p: node x)
Translate node x to job z

7 MPI* Throw Restored MPI Physical Interface (iface p: node x: job z)
Notify MPI of restored/new interface p

8 MPI Catch Restored MPI Physical Interface (iface p: node x: job z)
Add interface p back to the possible interfaces for communication

OMPI FTB workflows Page: 34 of 38

B.6.2 Workflow: React to Corrupted or Missing Data

A physical network interface is dropping or corrupting packets. MPI takes corrective action to
mask such fails. At some point MPI may decide to remove the interface from service similar to
Section B.6.1

Component Action Message

Interface p dropping or corrupting packets on node x
MPI is first to detect

1 MPI Throw MPI Message Corruption (node x: job z)
MPI detects message corruption
Continue masking corruption while interfaces are inspected

2 MPI* Catch MPI Message Corruption (node x: job z)
Translate node x to iface p-q (values stored internally)

3 MPI* Throw Check Interface (iface p-q: node x)
Ask script to check interfaces for suspected failure

4(a) Autonomic Script Catch Check Interface (iface p-q: node x)
Checks interfaces

4(b) IB Fault Monitor Catch Check Interface (iface p-q: node x)
Checks interfaces

5 Autonomic Script Throw Failed Physical Interface (iface p: node x)
Notify of confirmed failed interface

6 MPI* Catch Failed Physical Interface (iface p: node x)
Translate node x to job z (values stored internally)

7 MPI* Throw Failed MPI Physical Interface (iface p: node x: job z)
Notify MPI of failed interface

8 MPI Catch Failed MPI Physical Interface (iface p: node x: job z)
Mark interface p as down
If possible, use an alternative interface
If not, suspend communication until interface restored

Interface p returned to service on node x

9 Autonomic Script Throw Restored Physical Interface (iface p: node x)
Interface p has been restored to service on node x

10(a) IB Fault Monitor Catch Restored Physical Interface (iface p: node x)
Confirm interface is restored

10(b) MPI* Catch Restored Physical Interface (iface p: node x)
Translate node x to job z (values stored internally)

11 MPI* Throw Restored MPI Physical Interface (iface p: node x: job z)
Notify MPI of restored/new interface p

12 MPI Catch Restored MPI Physical Interface (iface p: node x: job z)
Add interface p back to the possible interfaces for communication

MPICH FTB events Page: 35 of 38

C MPICH2 FTB Events

This page describes the FTB events thrown and caught by MPICH2 in version 1.2.1

Event Space

MPICH2 throws events in the following event space:

Region name: ftb
Component category: mpi

Component name: mpich2

Events Thrown

RESOURCES

Some resource has been exhausted. The payload describes the type of resource e.g.:

Type Description

mem memory allocation

request request object

communicator communicator object

datatype datatype object

context id context id for communicator

sock no socket buffers available

Severity: error

COMMUNICATION

A communication operation failed. The payload contains the address of the process with which
the operation failed, or ”unknown”.

Severity: error

UNREACHABLE

An attempt to establish a connection with a process failed. The payload contains the address
of the process to which the connection attempt failed. or ”unknown”. Severity: error

ABORT

The process aborted. This is due to the application calling MPI Abort() or an internal error
which caused the application to abort. Severity: fatal

OTHER

Unspecified error. Severity: error

Events Caught

MPICH2 does not catch any events at this time.

MVAPICH FTB events Page: 36 of 38

D MVAPICH2 FTB Events

In this document we present the list of FTB events used by MVAPICH2 to proactive migrate
MPI processes when a node is failing.

CR FTB NODE FAIL

This event is published by the Migration-Trigger component and consumed by mpirun rsh (the
job launcher). It contains the name of the failing node.

Severity: INFO
Payload: node:<hostname>
The payload includes the hostname which is expected to fail.

CR FTB USER TRIGGER

This event is published when a user requests a migration (for example in a maintenance oper-
ation). Published by the Migration-Trigger component and consumed by the job launcher. It
contains the name of the source node of migration.

Severity:INFO
Payload: node:<hostname>
The payload includes the hostname which is expected to become unavailable.

CR FTB MIGRATE

This event is published by mpirun rsh and consumed by the mpispawns and CR (Checkpoint
Restart) module. It contains the name of the source and target nodes of the migration.

Severity: INFO
Payload: node:<src hostname, dest hostname>
The payload contains the hostname of the source and target nodes of the migration.

CR FTB CKPT DONE

This event is published by the MPI processes that were able to checkpoint and indicates that
the checkpoint is completed successfully. It is consumed by mpirun rsh.

Severity: INFO

CR FTB CKPT FAIL

This event is published by the MPI processes that failed to take the checkpoint and indicates
that the checkpoint is failed. It is consumed by mpirun rsh.

Severity: ERROR

CR FTB MIGRATE IMG C

This event is published by the mpispawn on the migration source and indicates that the migra-
tion of the checkpoint image is complete. It is consumed by mpirun rsh.

Severity: INFO
Payload: node:<src hostname, tgt hostname>
The payload includes the source and target nodes of the migration.

MVAPICH FTB events Page: 37 of 38

CR FTB MIGRATE RESTART

This event is published by mpirun rsh and consumed by mpispawns. It indicates that the
migrated processes can be restarted.

Severity: INFO
Payload: node:<tgt hostname>, rank:<mpiranks>
The payload includes the target node of the migration and the list of processes ranks mi-

grated.

CR FTB RSRT DONE

This event is published by MPI processes and consumed by mpirun rsh. It indicates that the
restart completed successfully.

Severity: INFO

CR FTB RSRT FAIL

This event is published by MPI processes and consumed by mpirun rsh. It indicates that the
restart failed.

Severity: ERROR

CR FTB CKPT FINALIZE

This event indicates that the CR module has been shutdown. Published by all MPI processes
doing MPI Finalize().

Severity: INFO

MVAPICH FTB workflows Page: 38 of 38

E MVAPICH FTB Workflows

FTB-IB is a FTB component that uses the FTB infrastructure to notify other FTB enabled
components about failures in the Infiniband Network. Since FTB-IB is a low-level component,
it is not really dependent on other components and so does not have to subscribe to events.
However, the following two workflow show where FTB-IB could be used.

E.1 Workflow: Process migration due to network failure

1. An MPI Job is launched on a given set of nodes.

2. Depending on the design of the MPI Library, it could use one or more Ports / HCAs.
Assume for the sake of this example that there is only one active port per node.

3. The MPI library subscribes to the FTB IB ADAPTER INFO and FTB IB PORT INFO
events. As the name suggests, these FTB Events indicate the status of the InfiniBand
Adapters / Ports.

4. Assume that the port that was used by the MPI library goes down. The MPI Library
will see a specific failure, maybe ibv poll cq() failing with IBV WC RETRY EXC ERR.
However, this information is not sufficient to determine if the failure was due to a port
failure on the sender’s node or on the receiver’s node.

5. The FTB IB PORT INFO event thrown by FTB-IB would indicate to the MPI library
(either on the sender or the receiver as the case may be) that a port went down. Armed
with this information, the MPI Library can then trigger a process migration from the
faulty node to a spare node.

E.2 Workflow: Port Failover

1. IB Adapters are usually equipped with 2 ports for ”High-Availability”. A well designed
IB network would use both ports of each adapter to ensure that from a given node, all
other nodes are reachable through either of the two ports and survive one or more link
failures. The same concept could be extended by using multiple IB Adapters per node.

2. In the event of a port failure, the MPI Library can fail-over to using alternate ports to
maintain connectivity.

3. IU Workflow - Interconnect Failure, Section B.6 talks about this in greater detail.

	Introduction
	FTB support in MPI

	MPI FTB Events
	Node/Job/Rank Availability (Refer workflows in Appendix B.1, B.2)
	Node/Job/Rank Failure Prediction
	C/R and Process Migration (Refer workflows in Appendix B.3, B.4)
	Checkpoint/Restart library notifications
	Job status notifications

	Open MPI FTB Events
	Open MPI FTB Workflows
	Workflow: Node Failure
	Workflow: Node Failure Without Job
	Workflow: Node Failure With MPI Job Aborting
	Workflow: Node Failure With MPI Job Continuing

	Workflow: Node Failure (No RM/JS)
	Workflow: Node Failure With MPI Job Aborting
	Workflow: Node Failure With MPI Job Continuing

	Workflow: Checkpoint/Restart & Process Migration
	Workflow: Gang Scheduling Support
	Workflow: Predicted Failure, Job Suspend
	Workflow: Predicted Failure, Process Migration

	Workflow: Checkpoint/Restart & Process Migration (No RM/JS)
	Workflow: Predicted Failure, Job Suspend
	Workflow: Predicted Failure, Process Migration

	Workflow: Faulty Interconnect
	Workflow: Fail-over to an Alternative Device
	Workflow: React to Corrupted or Missing Data

	Workflow: Faulty Interconnect (No RM/JS)
	Workflow: Fail-over to an Alternative Device
	Workflow: React to Corrupted or Missing Data

	MPICH2 FTB Events
	MVAPICH2 FTB Events
	MVAPICH FTB Workflows
	Workflow: Process migration due to network failure
	Workflow: Port Failover

